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Abstract Drought stress, characterized by increased vapor pressure deficit (VPD) and soil water content
(SWC) deficit, significantly impacts ecosystem productivity (GPP). Accurately assessing these factors in
satellite remote sensing (RS) GPP products is crucial for understanding the large‐scale ecological consequences
of drought. However, the accuracy of RS GPP in capturing the effects of VPD and SWC deficit, compared to EC
flux data, remains under‐investigated. Here we evaluated 10 RS GPP products and their mean (RSmean)
concerning VPD and SWC deficit across diverse ecosystems along a dryness gradient. Our results revealed that
RSmean and individual products generally capture the GPP response direction (VPD: mainly negative, SWC
deficit: mixed positive/negative) but consistently misestimate the absolute GPP changes. This discrepancy is
ecosystem‐specific and consistent across all RS products, underscoring the need to enhance RS products to
better account for ecosystem‐specific VPD effects and non‐linear SWC deficit responses, thereby improving RS
GPP accuracy under drought.

Plain Language Summary Droughts significantly affect how productive ecosystems are by reducing
the amount of water in the air (vapor pressure deficit, VPD) and in the soil (soil water content, SWC).
Researchers use satellite remote sensing (RS) products to study these drought impacts on ecosystem
productivity (GPP) across large areas. However, current satellite tools often inaccurately estimate the effects of
VPD and SWC deficit, leading to uncertainties in GPP estimation during droughts. In our study, we examined
the performance of 10 mainstream RS GPP estimates and their average (RSmean) to assess how well they track
ecosystem productivity responses to VPD and SWC deficit across various ecosystems along a dryness gradient.
We found that although RSmean and individual RS GPP products can capture the trend of GPP in response to
VPD and SWC deficit, they do not accurately match the actual value changes in GPP observed on the ground.
This misestimation varies by ecosystem and is consistent across all RS products. To improve the accuracy of
GPP estimation under droughts, we recommend that future RS GPP account for ecosystem‐specific VPD effects
and non‐linear SWC deficit effects. This would enable a more reliable assessment of the drought impacts on
vegetation productivity at large scales.

1. Introduction
Droughts, characterized by elevated atmospheric vapor pressure deficit (VPD) and soil water content (SWC)
deficit, significantly impact terrestrial gross primary productivity (GPP) (Sippel et al., 2018). The IPCC's sixth
assessment report (AR6) predicts that global warming will intensify droughts, potentially threatening terrestrial
carbon sinks by suppressing GPP (Caretta et al., 2022). Therefore, accurately estimating GPP’s response to
droughts is crucial for understanding ecosystem vulnerability under future climate scenarios (Chen et al., 2023).

The effects of VPD and SWC deficit on GPP are fundamentally linked to the soil‐plant‐atmosphere continuum
(Sperry et al., 2016). This involves soil water extraction by plant roots, its transport to leaves, and subsequent
transpiration via stomata (Passioura, 1982). Increased VPD triggers stomatal closure to minimize water loss,
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thereby reducing GPP (Grossiord et al., 2020). Similarly, reduced SWC also induces stomata closure due to
decreased plant xylem conductance and regulation of abscisic acid, further decreasing GPP (Buckley, 2019).

Recent studies utilizing ground eddy‐covariance (EC) flux measurements have examined the relative roles of
VPD and SWC in regulating GPP across various ecosystems and climate gradients. These studies suggest that
VPD predominantly affects GPP across extensive aridity gradients and serves as a more significant water stressor
than SWC deficit in humid ecosystems (e.g., mesic forests) (Kimm et al., 2020; Novick et al., 2016; Sulman
et al., 2016; S. Xu et al., 2023). Conversely, in semi‐arid and arid ecosystems (e.g., grasslands), SWC deficit has a
greater negative impact on GPP when SWC falls below a critical threshold (Fu et al., 2022; Stocker et al., 2018).
Collectively, these studies highlight the importance of considering the distinct roles of VPD and SWC deficit in
assessing the drought stress impacts on plant productivity across different climates and ecosystems.

While EC flux tower sites provide valuable ground‐truth data to examine the impacts of drought stress on GPP,
their limited number and spatial coverage present constraints (Pastorello et al., 2020). To enable large‐scale
monitoring of drought effects on ecosystem productivity, satellite remote sensing (RS)‐based GPP products
have been developed and widely used (Jiao et al., 2021; Ryu et al., 2019).

Despite the advantages of using RS GPP for assessing drought effects on productivity, uncertainties persist.
Different RS GPP data sets can yield varying results due to diverse assumptions about drought impacts across
stress dimensions (i.e., VPD vs. SWC deficit) and ecosystem types (Bao et al., 2022; Wang et al., 2022; Zhang
et al., 2015, 2023). For example, GPP estimation based on vegetation optical depth (VOD), derived from satellite‐
based surface microwave emission, is sensitive to canopy water content, making it a better indicator of SWC
deficit effects on plants (Lyons et al., 2021; Wild et al., 2021). Conversely, certain GPP estimations (e.g.,
Moderate Resolution Imaging Spectroradiometer, MODIS GPP products) are found to better capture the VPD
effects, as they incorporate an atmospheric water stress function (Hwang et al., 2008; Pei et al., 2020; Yuan
et al., 2014). Previous studies also show that in mesic ecosystems (e.g., Eastern European forests), where VPD
predominantly influences GPP dynamics, MODIS GPP aligns well with EC GPP measurements, showing a more
pronounced decrease with rising VPD compared to VOD‐based GPP. In contrast, in arid ecosystems (e.g.,
Western North America dryland), where SWC deficit mainly drives GPP dynamics, VOD‐based GPP is more
sensitive to SWC changes and aligns better with EC observations, while MODIS GPP tends to underestimate GPP
loss related with SWC deficit (Hwang et al., 2008; Wild et al., 2021).

To address these uncertainties, this study aims to comprehensively evaluate 10 mainstream satellite RS GPP
products (Table S1 in Supporting Information S1) by analyzing their performance in capturing the effects of VPD
and SWC deficit on GPP. We assembled globally available EC data to benchmark these RS GPP products under
various SWC‐VPD gradients and ecosystem types. Specifically, we addressed three questions: (a) How well does
the mean value of 10 GPP products (RSmean) capture the patterns (including direction and magnitude) of GPP
response to VPD and SWC deficit under various VPD‐SWC conditions compared to those derived from EC
observations? (b) Are the GPP response patterns, from RSmean and EC data, consistent across forest, non‐forest,
and cropland ecosystems? (c) Do different RS GPP products exhibit convergent or divergent performance in
capturing GPP responses to VPD and SWC deficit? By addressing these questions, we hope to improve our
understanding of the reliability of using RS GPP products for drought stress impact assessments and provide a
critical benchmark for future improvements in accurately characterizing both VPD and SWC deficit effects.

2. Materials and Methods
2.1. Materials

We used two main types of data: (a) EC flux data from FLUXNET2015 and European flux networks, and (b)
Satellite RS‐based GPP products.

2.1.1. Ground EC and Meteorological Measurements

We reviewed EC sites from FLUXNET2015 and European Flux networks, which process data using a stan-
dardized pipeline (Pastorello et al., 2020), detailed in Text S3 of the Supporting Information S1. A total of 80
sites, spanning from 2001 to 2015, were selected based on the availability of daily GPP, soil moisture content
(SWC), and three key meteorological variables: VPD, incoming shortwave radiation (SW) and air temperature
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(Ta). Surface SWC measurements were used due to the significantly fewer sites with deep‐depth SWC data.
Details on the 80 sites are provided in Table S2 and Figure S3 of the Supporting Information S1.

2.1.2. Satellite RS‐Based GPP Products

We analyzed ten widely used global GPP products (Table S1 in Supporting Information S1): MODIS (S. W.
Running et al., 2004), VPM (Zhang et al., 2017), ECLUE (Y. Zheng et al., 2020), GOSIF (Li & Xiao, 2019a,
2019b), VODCA2 (Wild et al., 2021), BESS (Jiang & Ryu, 2016), P‐model (Stocker et al., 2019), and FLUX-
COM (RF/ANN/MARS) (Jung et al., 2020). These products were chosen for two main reasons. First, they employ
diverse and representative GPP estimation methodologies (Zhu et al., 2024). Second, these products are publicly
available, covering long‐term periods (at least 2001–2015) with relatively high temporal resolution, ranging from
daily to 8‐day intervals. Detailed descriptions and processing methods are provided in Texts S1 and S2 of the
Supporting Information S1.

2.2. Methods

To evaluate the effectiveness of satellite RS GPP products in assessing GPP response to drought stress (VPD and
SWC deficit), we conducted three key analyses. First, we selected EC sites to minimize potential scale mis-
matches between RS and EC measurements (Section 2.2.1). Second, we trained artificial neural network (ANN)
models to link VPD and SWC with GPP, deriving GPP sensitivity to drought stress using these models (Sec-
tion 2.2.2). Finally, we compared the RS GPP drought stress sensitivity results with the corresponding EC results
(Sections 2.2.2 and 2.2.3). A flowchart summarizing these analyses is presented in Figure S2 of the Supporting
Information S1. Evaluations were performed for both the mean value of the 10 GPP products (RSmean, Sec-
tions 3.1 and 3.2) and individual products (Section 3.3).

2.2.1. EC Sites Selection

Given the spatial footprint differences between ground ECmeasurements (<1 km) and RS GPP (with pixel size of
0.5°, approximately 50 km), we conducted additional site screening to minimize scale mismatch. We imple-
mented a two‐step process to select EC sites with homogeneous vegetation cover that could represent the cor-
responding RS GPP pixel (Text S4 in Supporting Information S1). This resulted in the selection of 36 sites (sites
indicated by * in Table S2 of the Supporting Information S1) grouped into three major ecosystem types: forests
(evergreen needle forest—ENF, evergreen broadleaved forest—EBF, deciduous broadleaved forest—DBF, and
mixed forest—MF), non‐forests (grassland—GRA), and croplands (CRO) as per Fernández‐Martínez
et al. (2020).

2.2.2. ANN Models Training and Sensitivity Analyses

To assess GPP sensitivity to VPD and SWC deficit, we employed ANN models, a data‐driven machine learning
method widely used in ecological research (Green et al., 2020; Stocker et al., 2018). At each site, we adopted the
feed‐forward ANN model from Fu et al. (2022), following a three‐step process: (a) data screening; (b) model
training and evaluation; and (c) determining GPP sensitivity to VPD and SWC deficit based on the trained models
(Text S5 in Supporting Information S1). Detailed definitions of sensitivity to VPD and SWC deficit are provided
in Text S6 of the Supporting Information S1. An example site (US‐Blo), illustrating the ANN model's estimation
of GPP sensitivity to VPD and SWC deficit is included in Figure S5 of the Supporting Information S1.

2.2.3. Metrics for Comparing RS GPP Sensitivity to VPD and SWC Deficit With EC Measurements

We used a difference metric to evaluate any systematic bias in RS GPP sensitivity relative to EC results using
Equation 1:

Difference = median (SRS) − median (SEC) (1)

where SRS and SEC denote GPP sensitivity to VPD or SWC deficit derived from RS and EC data, respectively,
across all relevant sites.
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3. Results
3.1. Overall GPP Sensitivity to Drought Stress: EC Versus Satellite RSmean

Our results demonstrate that RSmean, the mean value of 10 GPP products, captures the general direction of GPP
response to VPD and SWC deficit across the full VPD‐SWC gradients (Figures 1a, 1b, 1d, and 1e). However, it
fails to reproduce the absolute GPP changes compared to EC measurements (Figures 1c and 1f).

The analysis of GPP sensitivity to VPD using EC data reveals a predominantly negative response across the entire
VPD‐SWC space, with variations in the distribution of these negative sensitivity values (Figure 1a). Similarly,
RSmean exhibits a primarily negative sensitivity to VPD (Figure 1b), but consistently underestimates the negative
GPP sensitivity values across a broad VPD‐SWC range compared to the EC results (Figure 1c).

For SWC deficit, EC data shows a mixed response, with positive and negative sensitivities depending on the
specific VPD‐SWC conditions (Figure 1d). Positive sensitivity dominates when SWC is high (>60th percentiles
of SWC), while negative sensitivity prevails as SWC decreases (<60th percentiles of SWC). In contrast, RSmean
exhibits distinct sensitivity patterns, with a broader VPD‐SWC range characterized by negative sensitivity and a
narrower range of positive sensitivity (mainly when SWC is >90th percentiles) (Figure 1e). Consequently,
significant differences in the magnitude of GPP‐SWC deficit sensitivity are observed between EC and RSmean
data, with RSmean tending to underestimate the positive (negative) sensitivity under high (low) SWC conditions
(Figure 1f).

3.2. Variation in GPP Response to Drought Stress Across Different Ecosystem Types

Our Results indicate that RSmean captures the overall direction of GPP response to VPD and SWC deficit in
forests (DBF, ENF, and MF), non‐forests (GRA), and croplands (CRO), consistent with the EC results (Figure 2).
However, there are differences in the sensitivity magnitude between RSmean and EC across these ecosystem
types (Figure 2).

Figure 1. Sensitivities of GPP to VPD and SWC deficit based on EC data and RSmean (mean value of 10 RS GPP data sets). Sensitivities of GPP to VPD for (a) EC data
and (b) RSmean; Sensitivities of GPP to SWC deficit for (d) EC data and (e) RSmean; Differences (RSmean minus EC) of GPP sensitivities to (c) VPD and (f) SWC
deficit. Median of sensitivities across all sites are used. An asterisk “*” indicates that the sensitivities are significantly different from zero based on t‐tests (p < 0.05)
across all sites for each VPD‐SWC bin.
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Figure 2.
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EC data consistently show a negative sensitivity to VPD across the entire VPD‐SWC space for all three ecosystem
types (Figures 2a, 2d, and 2g). Notable differences exist in GPP‐VPD sensitivity among ecosystem types, with
forests and non‐forests showing more pronounced negative sensitivity compared to croplands when SWC is high.
RSmean also captures similar negative sensitivity to VPD across ecosystem types (Figures 2b, 2e, and 2h), but
variations in sensitivity magnitude are observed (Figures 2c, 2f, and 2i). Forests exhibit a greater underestimation
of negative GPP sensitivity to VPD, while non‐forests and croplands tend to overestimate it.

GPP‐SWC deficit sensitivity derived from EC data displays significant variations across ecosystem types. Forests
and non‐forests exhibit mixed positive and negative sensitivities (Figures 2j and 2m), while croplands are pre-
dominantly characterized by positive sensitivity (Figure 2p). Non‐forests show more negative sensitivity values
compared to forests (Figures 2j and 2m). RSmean generally aligns with the sensitivity direction observed in EC
data for forests and non‐forests (positive vs. negative) and for croplands (predominantly positive) (Figures 2k, 2n,
and 2q). However, in terms of sensitivity magnitude, RSmean primarily underestimates negative GPP‐SWC
deficit sensitivity in non‐forests, particularly when SWC is below the threshold (i.e., 70th percentiles)
(Figure 2o), while all three ecosystem types underestimate the positive effects of SWC deficit across most of the
VPD‐SWC space (Figures 2l, 2o, and 2r).

3.3. Performance of Each RS Product in Capturing GPP Response to Drought Stress

Consistent with EC results, each RS product captures the negative effects of VPD across the three ecosystem
types examined (Figure 3a), with forests and non‐forests displaying a decreased negative VPD sensitivity with
drying‐down SWC gradient, while croplands showing an opposite pattern (Figures 3c, 3e, and 3g). Specifically,
all products display similar responses to VPD in forests, albeit with a systematic underestimation of negative VPD
effects (Figure 3c, Figures S7a and S7c in Supporting Information S1) compared to non‐forests and croplands
(Figure 3e, Figures S8a and S8c in Supporting Information S1; Figure 3g, Figures S9a and S9c in Supporting
Information S1). In non‐forests, all products exhibit convergent negative VPD responses with discrepancies
between RS and EC results (Figure 3e, Figures S8a and S8c in Supporting Information S1). For croplands, RS
products display comparable negative VPD responses, though the P‐model and VODGPP show larger biases
(Figure 3g, Figures S9a and S9c in Supporting Information S1).

Regarding the response to SWC deficit, RS products generally capture a mixture of positive and negative sen-
sitivities across the high to low SWC gradient (Figure 3b). This includes similar mixed positive and negative
sensitivities observed in both forests and non‐forests, and predominantly positive sensitivities in croplands
(Figure 3d, Figure S7b in Supporting Information S1; Figure 3f, Figure S8b in Supporting Information S1;
Figure 3h, Figure S9b in Supporting Information S1). In forests, RS products tend to underestimate positive
effects when SWC is high (>10th percentiles), subsequently underestimate negative effects under low SWC
conditions (<10th SWC percentiles and >80th VPD percentiles) (Figure S7d in Supporting Information S1). In
non‐forests, all RS products underestimate positive effects when SWC is above 10th percentiles and negative
effects when SWC is below 70th percentiles (Figure S8d in Supporting Information S1). For croplands, most RS
products (excluding VODGPP) continuously underestimate positive effects (Figure S9d in Supporting
Information S1).

4. Discussion and Conclusion
RS‐based GPP products are essential for assessing drought effects on terrestrial carbon fluxes and benchmarking
Earth system models (Sippel et al., 2018). This study comprehensively evaluates the capacity of 10 RS GPP
products, including their mean value (RSmean) and individual products, to capture the relative effects of VPD and

Figure 2. Comparison of GPP sensitivities to VPD and SWC deficit using EC data and RSmean (mean value of 10 RS GPP data sets) across different ecosystem types.
Median values of sensitivities within each ecosystem type are used. Section A: GPP sensitivities to VPD for forests (a), (b), non‐forests (d), (e), and croplands (g), (h),
with left panels (a, d, g) showing EC data and middle panels (b, e, h) showing RSmean. The differences (RSmean minus EC) in GPP sensitivities to VPD are in the last
panel for forests (c), non‐forests (f), and croplands (i). Section B: GPP sensitivities to SWC deficit for forests (j), (k), non‐forests (m, n), and croplands (p, q), with left
panels (j, m, p) showing EC data and middle panels (k, n, q) showing RSmean. The differences in GPP sensitivities to SWC deficit are displayed in the last panel for
forests (l), non‐forests (o), and croplands (r). An asterisk “*” indicates that the sensitivities are significantly different from zero based on t‐tests (p< 0.05) across all sites
for each VPD‐SWC bin.
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Figure 3.
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SWC deficit—two key dimensions describing droughts—on GPP across diverse VPD‐SWC gradients and
ecosystem types.

Consistent with previous research (Fu et al., 2022), EC data reveal negative GPP responses to VPD and mixed
positive and negative responses to SWC deficit (Figures 1a and 1b). Both RSmean and all RS products capture the
general direction of these responses (Figures 1d, 1e, 3a, and 3b, Figures S6a and S6b in Supporting Informa-
tion S1), but tend to underestimate the absolute magnitude of GPP changes compared to EC data. This under-
estimation is evident in the negative GPP sensitivity to VPD across the entire VPD‐SWC space, and the positive
(negative) sensitivity of GPP to SWC deficit under high (low) SWC conditions (Figures 1c, 1f, 3a, and 3b, Figures
S6c and S6d in Supporting Information S1). These findings suggest that while RS products can capture drought
effects on plant productivity, their ability to quantify absolute GPP loss due to drought remains uncertain.

The significant magnitude difference observed between RS and EC may be attributed to the limited accuracy of
RS products in modeling drought stress (i.e., high VPD and low SWC) (Liu et al., 2020; Lu et al., 2022). The 10
products in this study can be classified into three types based on their representation of water stress: (a) atmo-
spheric dryness indicators (MODIS, ECLUE, GOSIF, BESS, and FLUXCOM), (b) combined atmospheric
dryness and soil moisture deficit indicators (P‐model), and (c) plant water content indicators (VPM, VOD).

EC results show that GPP sensitivity to VPD varies across different ecosystems (Figures 2a, 2d, and 2g). This
finding aligns with previous studies (Grossiord et al., 2020; S. Xu et al., 2023), which indicate that the GPP‐VPD
response curves vary with plant species and ecosystem types. However, RS GPP products often use uniform
coefficients (e.g., a fixed slope in the stomatal conductance model within BESS model) or empirical response
equations (e.g., MODIS) to broadly represent the GPP‐VPD relationships, neglecting species and ecosystem‐
specific variations (Pei et al., 2020, 2022). This approach fails to capture the actual GPP response to VPD as
observed in EC flux data (Figures 1d and 3a, Figure S6c in Supporting Information S1). Discrepancies between
RS and EC results vary across different ecosystem types (Figures 2c and 3c, Figure S7c in Supporting Infor-
mation S1; Figures 2f and 3e, Figure S8c in Supporting Information S1; Figures 2i and 3g, Figure S9c in Sup-
porting Information S1), suggesting that RS GPP may not fully capture ecosystem‐specific responses. These
findings emphasize the need to refine RS methodologies to quantify differential VPD effects across diverse
ecosystem types.

The effect of VPD on GPP is also regulated by SWC (Green, 2024). Our results indicate that RS GPP can capture
the GPP‐SWC deficit relationship to some extent, as declines in SWC often coincide with increased atmospheric
dryness (Seneviratne et al., 2010), where VPD serves as a significant water stress factor captured by several RS
products (Jiang & Ryu, 2016; Jung et al., 2020; Li & Xiao, 2019b; S. W. Running et al., 2004; Zhang et al., 2017;
Y. Zheng et al., 2020). However, recent studies suggest that under extreme conditions—very dry or very wet
SWC—the VPD‐SWC relationship decouples. In very dry soil, stomatal closure occurs to prevent excessive
hydraulic conductance losses, outweighing VPD in constraining plant productivity (Seneviratne et al., 2010;
Stocker et al., 2018). Conversely, in wet conditions, decreases in SWC can reduce stomatal conductance but may
still increase productivity (Fu et al., 2022; Green, 2024). This decoupling can hinder the performance of RS GPP
products, explaining the biases in capturing SWC deficit effects compared to EC data under extreme conditions
(Figures 1f and 3b, Figure S6d in Supporting Information S1).

The underestimation of the negative effects of SWC deficit is more pronounced in non‐forests (Figure S8d in
Supporting Information S1) than in forests, where it is significant only under conditions of high VPD (>80th
percentiles) and low SWC (<10th percentiles) (Figure S7d in Supporting Information S1). Consistent with
previous research (Stocker et al., 2019), we found that LUE‐based GPP (MODIS and VPM) and the process‐
based GPP (BESS) products underestimate the negative effects of SWC deficit in non‐forests (Figure 3f,
Figure S8d in Supporting Information S1). This may be due to insufficient consideration of SWC deficit effects.

Figure 3. Comparison of GPP sensitivities to VPD and SWC deficit across SWC gradient using EC data (black line) and each of 10 RSGPP products (color lines) at
different ecosystem types. Left panels (a, c, e, g) show GPP‐VPD sensitivity, while right panels (b, d, f, h) show GPP‐SWC deficit sensitivity. Panel (a), (b) presents the
results from all sites, followed by forest sites (c), (d), non‐forest sites (e), (f), and cropland sites (g), (h). Each solid line represents the median of sensitivity of GPP to
VPD and SWC deficit in each SWC bin. In the left panels (a, c, e, g), a sensitivity <0 indicates a negative effect of VPD on GPP, while in the right panels (b, d, f, h), a
sensitivity >0 (or < 0) indicates that a positive (negative) effect of SWC deficit on GPP. The vertical dashed line in the right panels (a, c, e) represents the SWC
percentile where the sensitivity value derived from EC is zero.
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Stocker et al. (2019) address this by incorporating an empirical soil moisture stress function into the P‐model,
which improved GPP estimation performance under very dry soil moisture conditions (purple line in Figure 3f).
Additionally, VODGPP, utilizing microwave RS estimates of VOD (Konings et al., 2019), shows the least bias in
capturing GPP‐SWC response in non‐forests (dark blue line in Figure 3f; Figure S8d in Supporting Informa-
tion S1), but significantly underestimates SWC deficit effects in forests under dry SWC conditions (dark blue line
in Figure 3d; Figure S7d in Supporting Information S1). This difference aligns with previous findings and may be
due to VOD's reliance on plant water content, which decreases significantly in non‐forests but not in forests
(Teubner et al., 2021; Wang et al., 2022).

Regarding the underestimation of positive SWC deficit, all GPP products underestimate these effects under high
SWC conditions (>10th percentiles) (Figures 1d and 3a, Figure S6d in Supporting Information S1). A recent
study has suggested that RS products use monotonic functions to simulate SWC effects on GPP, which differs
from the bell‐shaped curve relationship of GPP‐SWC as observed in our study and others based on EC obser-
vations. Incorporating a Gaussian function into LUE models could improve this misrepresentation (Tagesson
et al., 2021). The underestimation is more pronounced in forests and croplands (Figures 2l and 3d, Figure S7d in
Supporting Information S1; Figures 2r and 3h, Figure S9d in Supporting Information S1) compared to non‐forests
(Figures 2o and 3f, Figure S8d in Supporting Information S1). These findings highlight a limitation in RS GPP
products, particularly under extreme wet and dry soil conditions, emphasizing the need to enhance these products
to better capture the relationships between GPP and SWC deficit across diverse moisture conditions and
ecosystem types.

Interestingly, our results show distinct differences in the response of forests and non‐forests to water stress.
Forests are more sensitive to the negative VPD effects than non‐forests (Figures 2a and 2d), but less sensitive to
the negative SWC deficit effects within the VPD‐SWC spaces (Figures 2j and 2m). These differences can be
attributed to their diverse root systems (H. Xu et al., 2023; C. Zheng et al., 2023). Forests, with deeper root
systems, have a higher capacity for absorbing soil water, potentially mitigating their sensitivity to SWC changes
and making them less reactive compared to non‐forest ecosystems, such as grasslands, under elevated SWC
deficit (Hoek van Dijke et al., 2023). This differential response emphasizes the importance of modeling
ecosystem‐specific characteristics when evaluating drought impacts.

It is critical to note that the flux tower data set used in this study predominantly represents temperate ecosystems,
while tropical and boreal ecosystems—accounting for over 83% of global forest carbon sinks from 1990 to 2019
(Pan et al., 2024)—are significantly underrepresented due to current data limitations. This underrepresentation
complicates the generalization of our findings across global forest biomes, as boreal and tropical forest eco-
systems may exhibit unique physiological responses to environmental stressors. For example, boreal trees
demonstrate more conservative water use strategies, often closing stomata to minimize water loss, leading to a
higher negative sensitivity of GPP to increasing VPD (Lin et al., 2015; Massmann et al., 2019). In contrast,
tropical trees generally employ more aggressive water use strategies, prioritizing carbon fixation over water
conservation, resulting in less negative sensitivity of GPP to increasing VPD (Massmann et al., 2019). Addi-
tionally, within tropical regions, dry tropics dominated by deciduous trees and shrublands face greater soil
moisture constraints compared to evergreen rainforests, as they need to avoid xylem embolism, thus showing
higher negative sensitivity of GPP to SWC deficit (Hasselquist et al., 2010). These forest type‐specific responses
are inadequately captured in current models, which tend to underestimate the negative impacts of SWC deficit on
GPP in dry tropical regions and poorly account for VPD limitations in boreal zones. This discrepancy is con-
cerning, given that climate change is expected to lengthen dry seasons in the tropics (H. Xu et al., 2022) and
increase atmospheric aridity (VPD) in boreal regions (Mirabel et al., 2023). Addressing these gaps requires
prioritizing the deployment of flux towers in underrepresented ecosystems and improving parameterizations for
their GPP‐drought sensitivities, ultimately enhancing the accuracy of satellite‐derived GPP products and refining
simulations of drought impacts on global forest carbon dynamics (Fang et al., 2024).

Our study highlights two critical steps to advance future research. First, when comparing with EC measurements,
the station values for RS GPP products were extracted from the nearest pixel. To mitigate this uncertainty, we
selected RS data and flux tower sites with the identical PFT and its dominance exceeding 60%. However, this
approach also introduces uncertainties in evaluating model performance. Second, biases in RS model simulations
(as examined in this study) were influenced by input data, but obtaining all model input variables is challenging.
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Performing on‐site scenario using consistent input data can help better diagnose and understand the in-
consistencies between RS and EC in characterizing GPP‐water stress response.

In summary, our study provides a comprehensive evaluation of existing RS products, their accuracy and limi-
tations in tracking water stress on GPP under droughts. We evaluated the performance of 10 RS GPP products, as
well as RSmean, in response to VPD and SWC deficit across different ecosystem types, using EC measurements
as benchmarks. Our analysis indicated that while RSmean and each individual product capture the general
directional response of GPP to VPD and SWC deficit across the full VPD‐SWC gradient, they fail to reproduce
the absolute value of GPP changes compared to EC measurements. Importantly, the discrepancies between RS
and EC data are ecosystem‐specific and consistent across all RS products examined. These findings suggest that
incorporating ecosystem‐specific VPD effects and non‐linear SWC deficit responses could enhance RS‐based
GPP simulations under droughts.

Data Availability Statement
The eddy covariance measurements are available online at the FLUXNET2015 (https://fluxnet.org/data/flux-
net2015‐dataset/) and ICOS European flux (https://www.icos‐cp.eu/data‐products/ecosystem‐release). The
MODIS GPP (MOD17A2H) data are available from (S. Running et al., 2015) at NASA Earth Observing System
Data and Information System (EOSDIS) Land Processes (LP) Distributed Active Archive Center (DAAC). The
VPMGPP data can be from Zhang et al. (2017). The ECLUE GPP data can be found from Y. Zheng et al. (2020).
The GOSIF GPP data can be downloaded from Li and Xiao (2019b). The VODCA2 GPP data can be accessed via
Wild et al. (2021). The BESS GPP data can be downloaded from Jiang and Ryu (2016). The P‐model GPP data
(s1b_fapar3g_v2_global.d.gpp.nc) are available in Stocker et al. (2019). The FLUXCOM data can be downloaded
via Jung et al. (2019). MODIS land cover product (MCD12C1) data are available in Sulla‐Menashe and
Friedl (2018).
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